ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Qingyi Tan, Xueyu Gong, Qianhong Huang, Yijun Zhong
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 88-94
Technical Paper | doi.org/10.1080/15361055.2019.1680039
Articles are hosted by Taylor and Francis Online.
Ion cyclotron resonance heating is a reliable tool for high-power and long-pulse operation in fusion reactors. However, a sudden increase in the reflected radio-frequency (RF) power poses serious problems such as L- to H-mode transition or edge-localized modes that must be solved for future fusion reactors. It is necessary to place an impedance matching system between the RF generator and antenna to mitigate the adverse effects of the variations. The idea of a fast-response ferrite stub tuner was developed to trace the load variation of the antenna. This study presents theoretical calculation of the suitable normalized mechanical length of the ferrite stub tuner using transmission line theory and numerically analyzes the impedance matching parameters of the single ferrite stub antenna system. The present study demonstrates the feasible investigation of the magnetic field modulation, which can lead to the effective reduction in the reflected RF power fraction during the large change in plasma resistance.