ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Qingyi Tan, Xueyu Gong, Qianhong Huang, Yijun Zhong
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 88-94
Technical Paper | doi.org/10.1080/15361055.2019.1680039
Articles are hosted by Taylor and Francis Online.
Ion cyclotron resonance heating is a reliable tool for high-power and long-pulse operation in fusion reactors. However, a sudden increase in the reflected radio-frequency (RF) power poses serious problems such as L- to H-mode transition or edge-localized modes that must be solved for future fusion reactors. It is necessary to place an impedance matching system between the RF generator and antenna to mitigate the adverse effects of the variations. The idea of a fast-response ferrite stub tuner was developed to trace the load variation of the antenna. This study presents theoretical calculation of the suitable normalized mechanical length of the ferrite stub tuner using transmission line theory and numerically analyzes the impedance matching parameters of the single ferrite stub antenna system. The present study demonstrates the feasible investigation of the magnetic field modulation, which can lead to the effective reduction in the reflected RF power fraction during the large change in plasma resistance.