ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Wei Zhao, Yali Wang, Yuzhong Jin, Li Zhao, Hongxia Zhou, Lin Nie, Guangwu Zhong, Chunjia Liu, Christopher Watts, James Paul Gunn
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 79-87
Technical Paper | doi.org/10.1080/15361055.2019.1674123
Articles are hosted by Taylor and Francis Online.
The primary aim of the ITER divertor Langmuir probe system is to measure the plasma parameters at the divertor target plates. Saturation ion flux coming from the direct-current biased probe mode is used for advanced machine control, and the swept double-probe mode is recommended to measure electron temperature and density for physics studies. The design of the probe system includes three parts. First, tungsten Langmuir probes are mounted on the side of the target plates for collecting current from plasma, and thermomechanical simulation results show the design of the probe is robust and can survive under harsh working environments. Second, the electronics consists of the power supply, mode switching, and signal conditioning box and is used for driving Langmuir probes in different operation modes to obtain expected plasma information. Third, the functions of instrument and control include publishing configuration; monitoring and control; calibration; data acquisition; communication with the control, data access and communication (CODAC) system; and real-time ion flux measurement at the divertor target. The system design also complies with ITER’s technical practices, standards, and codes.