ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Jie Li, Jie Zhang, Yang Qiu, Liangliang Zhang, Changle Liu, Xiang Gao
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 70-77
Technical Note | doi.org/10.1080/15361055.2019.1610320
Articles are hosted by Taylor and Francis Online.
The breeding material ratio (BMR) makes a significant impact on the tritium breeding ratio (TBR) to the fusion blanket due to the material fraction influence inside the blanket interior. The qualitative study on the BMR-related TBR issues are focused on the two cases of water-cooled blanket modules: the mixture blanket structure and the multilayer blanket case. The study indicates that TBR is a unique value in accordance with one BMR value in the mixture blanket. Moreover, a systematic scheme on TBR estimation based on multiple variable combinations is carried out for the multilayer model. It is found that the blanket local TBR would vary along with BMR increasing, and that high TBRs are obtained at BMR in the range of 0.08 to 0.12 for the two cases. In particular, the maximum TBR occurs when the BMR is in the range of 0.09 to 0.1. Furthermore, TBR variation due to BMR change induced by blanket macrofactors, like material type, material ratio, material structure, etc., is defined using the universal function solution. These results would be more important to the breeding blanket design and optimization since they would affect the blanket structure concepts and their TBR estimations. Hence, the blanket BMR issues are important concerns on the road toward an advanced blanket system for the Chinese Fusion Engineering Test Reactor (CFETR) at the present pre-engineering stages.