ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Jie Li, Jie Zhang, Yang Qiu, Liangliang Zhang, Changle Liu, Xiang Gao
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 70-77
Technical Note | doi.org/10.1080/15361055.2019.1610320
Articles are hosted by Taylor and Francis Online.
The breeding material ratio (BMR) makes a significant impact on the tritium breeding ratio (TBR) to the fusion blanket due to the material fraction influence inside the blanket interior. The qualitative study on the BMR-related TBR issues are focused on the two cases of water-cooled blanket modules: the mixture blanket structure and the multilayer blanket case. The study indicates that TBR is a unique value in accordance with one BMR value in the mixture blanket. Moreover, a systematic scheme on TBR estimation based on multiple variable combinations is carried out for the multilayer model. It is found that the blanket local TBR would vary along with BMR increasing, and that high TBRs are obtained at BMR in the range of 0.08 to 0.12 for the two cases. In particular, the maximum TBR occurs when the BMR is in the range of 0.09 to 0.1. Furthermore, TBR variation due to BMR change induced by blanket macrofactors, like material type, material ratio, material structure, etc., is defined using the universal function solution. These results would be more important to the breeding blanket design and optimization since they would affect the blanket structure concepts and their TBR estimations. Hence, the blanket BMR issues are important concerns on the road toward an advanced blanket system for the Chinese Fusion Engineering Test Reactor (CFETR) at the present pre-engineering stages.