ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G. M. Wallace, C. E. Kessel, J. Hosea, R. Majeski, J. R. Wilson, T. Rognlien, L. M. Waganer
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 53-61
Technical Paper | doi.org/10.1080/15361055.2019.1629253
Articles are hosted by Taylor and Francis Online.
This paper addresses the potential impact of liquid metal (LM) plasma-facing components (PFCs) for the heating and current drive (H&CD) actuators on the Fusion Nuclear Science Facility (FNSF) fusion reactor. Fulfilling the high neutron fluence mission of the FSNF requires steady-state operation for extremely long pulses (months to years) between maintenance opportunities. The use of LM as a surface material is one strategy for extending the lifetime of the PFCs for long pulse operation in a high heat flux, high neutron flux environment like that of the FNSF. Liquid metal PFCs provide possible pathways forward on many difficult aspects of a fusion reactor; however, the LM PFCs also bring new challenges and unknowns with respect to the H&CD actuators needed to provide steady-state operation. The development of LM-compatible materials for radio-frequency (RF) antennas will be critical, as well as strategies for minimizing contamination of antenna surfaces and the core plasma. Successful deployment of LM PFCs on the FNSF will require operational experience with RF in a LM environment both on test stands and in an integrated toroidal environment.