ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
W. J. Chen, D. L. Yu, L. W. Yan, B. S. Yuan, X. X. He, L. Liu, Y. L. Wei, N. Zhang, X. F. He, H. Wu, Z. B. Shi, Y. Liu, Q. W. Yang
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 37-44
Technical Paper | doi.org/10.1080/15361055.2019.1629251
Articles are hosted by Taylor and Francis Online.
In order to reconstruct the plasma current density, the Current Profile Fitting (CPF) code has been successfully developed on the HL-2A tokamak. A seven-channel motional Stark effect (MSE) diagnostic based on dual photoelastic modulators is installed to measure the pitch angle of the magnetic field, which can be used as an internal magnetic field constraint for the CPF code. Recently, the MSE polarimeter was upgraded with a real-time wavelength matching system to improve the signal-to-noise ratio. The magnetic field angle (γpitch) with a temporal resolution of 10 ms can be provided. In the CPF code, the plasma current density is described as a polynomial, and the Least-Squares method is used to determine the coefficients of the polynomial. The Finite Difference method and the Strongly Implicit Procedure method are used to solve the Grad-Shafranov equation. The code operation is stable. With the improved-quality MSE data, the CPF calculation result of shot 30782 suggests that the safety factor q profile is monotonic. The minimum q value is less than 1 on-axis during sawtooth oscillations in shot 30782. And, the position of the q = 1 surface is consistent with the sawtooth inversion radius measured by electron cyclotron emission and soft X-ray diagnostics.