ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Renjing Fan, Peng Fu, Jun Tao, Ge Gao, Liansheng Huang, Zhiquan Song, Jinchao Li, Yulong Ye
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 21-28
Technical Paper | doi.org/10.1080/15361055.2019.1610318
Articles are hosted by Taylor and Francis Online.
The ITER poloidal field (PF) coil power supply system consists of 14 basic converter units that feed six superconducting coils. The converter unit is the complicated, challenging, and unique system to realize four-quadrant operation compatible with the superconductive load and the demand for plasma control. This paper describes the final design of the control strategies, which are implemented in the local controller of the PF converter system. They are zero crossing current control strategy in circulating operation mode, current balance control strategy in parallel operation mode, and hysteresis band control strategy in mode transition. In addition, the performance of the control system is demonstrated by the analysis, and the control strategies are validated by the simulations and corresponding tests.