ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
L. Begrambekov, A. Gordeev, Y. Ma, G. Vayakis, P. Shigin, Ya Sadovsky, A. Zakharov, M. Walsh
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 1-12
Technical Paper | doi.org/10.1080/15361055.2019.1589206
Articles are hosted by Taylor and Francis Online.
High-quality tungsten coating deposition on sintered aluminum nitride ceramic substrates (both of thin flat chips and structural boxes) was realized using an adapted plasma-aided coating deposition rig. The tungsten coating produced using this technique and the accompanying apparatus setup are of high-purity, strong adhesion, and controlled three-dimensional uniformity (<20% thickness variations). The coating also exhibits well-structured and smooth (Ra < 1.0 µm) microscopic surface landscape with densely clustered tungsten granulations. The coated samples were tested under load conditions expected during ITER operation, including thermal cycling and superheated (up to 500°C) steam. Exposure to thermal cycles and hot steam made no apparent changes to the coating’s microscopic structure with no sign of cracks, blistering, or exfoliation seen under electron microscopy. These successes validated the microwave shield design for the ITER high-frequency magnetic sensor, which is based on this concept, and laid a solid foundation for the production of this component in the forthcoming procurement phase. Besides, a failure test was conducted for the tungsten coating in the temperature range of 500°C to 1500°C. Surface smoothing, pores, delamination, and mass loss in substrate were observed when temperature exceeded 1000°C, possibly due to the evaporation of aluminum atoms. These findings unveiled the changes of tungsten coating properties under extreme conditions that are of both academic and practical values.