ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Teruya Tanaka, Hiroyuki Noto, Fuminobu Sato, Yoshimitsu Hishinuma, Hiroyuki A. Sakaue, Masahito Yoshino
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1076-1083
Technical Paper | doi.org/10.1080/15361055.2019.1658039
Articles are hosted by Taylor and Francis Online.
To examine the impact of nuclear transmutation in K-type and N-type thermocouples on temperature measurements in a fusion reactor, thermocouples with altered compositions were fabricated, and their responses were obtained at up to 800°C. The compositions of the thermocouples were altered according to transmutation calculations simulating the 3.5-, 4.6-, and 7-year use at the first wall and 40-year use at the front surface of the radiation shield. Comparison of the responses with commercial thermocouples at 800°C showed that the K-type and N-type thermocouples with altered composition simulating the 7-year use at the first wall indicate 20% to 25% lower temperatures. In this condition, the weight ratio of additive powders for simulation of transmuted elements was ~3%. The differences of responses between the commercial thermocouples and thermocouples simulating transmutation are dependent on the weight ratio of the additive powders. The present data could be used for estimation of response degradation of thermocouples used for long-term operation in a fusion reactor.