ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
C. Fagan, M. Sharpe, W. T. Shmayda, W. U. Schröder
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1058-1063
Technical Paper | doi.org/10.1080/15361055.2019.1610308
Articles are hosted by Taylor and Francis Online.
In this work, Aluminum 6061-T6 samples were subjected to MIL-DTL-5541F type-I, class-3 anodic coatings, where a yellow irradiate finish was achieved. Both chromate-conversion coatings (CCCs) and unmodified samples were exposed to deuterium-tritium (PT = 0.51 atm) gas for 24 h at room temperature. Following loading, the samples were subjected to one of two desorption techniques: temperature-programmed desorption or a surface stripping technique. The results show that chromic-acid anodizing of aluminum dramatically increases the total quantity of tritium retained by the treated surface as compared to unmodified aluminum. X-ray photoelectron spectroscopy and scanning electron microscopy studies of both treated aluminum and unmodified samples indicate that the CCCs contain significant quantities of hydrated chromium. Using transmission electron microscopy, the surface is shown to have significant cracking and fracturing of the film and leads to a highly grained and porous surface. Such surface defects coupled with the vast quantity of hydration sites are likely reasons for the increased retained tritium inventory observed for CCC samples. Because of the physical and chemical properties of unmodified CCC samples, they are not suitable for use in tritium environments.