ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Sharpe, C. Fagan, W. T. Shmayda
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1053-1057
Technical Paper | doi.org/10.1080/15361055.2019.1644136
Articles are hosted by Taylor and Francis Online.
The distribution of tritium in the near surface of Type 316 stainless steel has been measured using a combination of a zinc chloride (ZnCl2) wash and acid etching with diluted aqua regia. This method improves upon etching measurements reported in the literature: Results show depth resolutions of ~10 nm using the diluted aqua regia. The ZnCl2 wash results show very high surface concentration (~1.5 × 1013 Bq/cm3), which decreases by a factor of 106 after etching to a depth of ~10 μm. Further, the tritium concentrations in the near surface (<10 μm) of unmodified stainless steel samples do not change significantly over the course of 233 days, which indicates a quasi-equilibrium state has been reached. Tritium migration to the surface from the subsurface region was measured by etching a sample and then storing it in air for 2 to 4 days. After storing in air, the surface concentrations increased a thousandfold and rapidly decreased to base levels after etching an additional ~2 μm. These measurements indicate that perturbing the quasi-equilibrium concentration profile results in tritium migration to the surface in order to reestablish the prior equilibrium state.