ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Sharpe, C. Fagan, W. T. Shmayda
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1053-1057
Technical Paper | doi.org/10.1080/15361055.2019.1644136
Articles are hosted by Taylor and Francis Online.
The distribution of tritium in the near surface of Type 316 stainless steel has been measured using a combination of a zinc chloride (ZnCl2) wash and acid etching with diluted aqua regia. This method improves upon etching measurements reported in the literature: Results show depth resolutions of ~10 nm using the diluted aqua regia. The ZnCl2 wash results show very high surface concentration (~1.5 × 1013 Bq/cm3), which decreases by a factor of 106 after etching to a depth of ~10 μm. Further, the tritium concentrations in the near surface (<10 μm) of unmodified stainless steel samples do not change significantly over the course of 233 days, which indicates a quasi-equilibrium state has been reached. Tritium migration to the surface from the subsurface region was measured by etching a sample and then storing it in air for 2 to 4 days. After storing in air, the surface concentrations increased a thousandfold and rapidly decreased to base levels after etching an additional ~2 μm. These measurements indicate that perturbing the quasi-equilibrium concentration profile results in tritium migration to the surface in order to reestablish the prior equilibrium state.