ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jae-Uk Lee, Min Ho Chang, Hyun-Goo Kang, Dong-You Chung, Sei-Hun Yun, Suh-Young Lee, In-Beum Lee
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1046-1052
Technical Paper | doi.org/10.1080/15361055.2019.1643688
Articles are hosted by Taylor and Francis Online.
This paper presents a dynamic model and simulation of the fuel delivery process between the separation system and the fueling system in the fusion fuel cycle considering the time-varying tokamak fuel demand. The fuel delivery process consists of vacuum pumps, valves, pressure vessels, and pipelines. Experimental data are applied to model the performance curves of the vacuum pumps. The delivery pressure is needed to be controlled to satisfy the pressure requirement of the fueling system. The developed dynamic model can be used to investigate delivery pressure fluctuation under various demand scenarios including a certain peak demand. The model is applied to the tritium delivery line during the inductive operation of the tokamak. Several rules for vessel switching are analyzed to examine the change of delivery pressure. The results show that the fluctuation can be reduced by switching vessels just before peak demand. The pressure fluctuation must be avoided by improving the flow coefficient of the control valve.