ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Jae-Uk Lee, Min Ho Chang, Hyun-Goo Kang, Dong-You Chung, Sei-Hun Yun, Suh-Young Lee, In-Beum Lee
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1046-1052
Technical Paper | doi.org/10.1080/15361055.2019.1643688
Articles are hosted by Taylor and Francis Online.
This paper presents a dynamic model and simulation of the fuel delivery process between the separation system and the fueling system in the fusion fuel cycle considering the time-varying tokamak fuel demand. The fuel delivery process consists of vacuum pumps, valves, pressure vessels, and pipelines. Experimental data are applied to model the performance curves of the vacuum pumps. The delivery pressure is needed to be controlled to satisfy the pressure requirement of the fueling system. The developed dynamic model can be used to investigate delivery pressure fluctuation under various demand scenarios including a certain peak demand. The model is applied to the tritium delivery line during the inductive operation of the tokamak. Several rules for vessel switching are analyzed to examine the change of delivery pressure. The results show that the fluctuation can be reduced by switching vessels just before peak demand. The pressure fluctuation must be avoided by improving the flow coefficient of the control valve.