ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Guangming Zhou, Bradut-Eugen Ghidersa, Francisco A. Hernández, Qinlan Kang, Heiko Neuberger
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1016-1023
Technical Paper | doi.org/10.1080/15361055.2019.1629247
Articles are hosted by Taylor and Francis Online.
Within the framework of EUROfusion activities, the helium cooled pebble bed (HCPB) breeding blanket is under development in Karlsruhe Institute of Technology (KIT). The enhanced HCPB, using a fissionlike fuel breeder pin assembly configuration, is proposed as the near-term breeding blanket for the European Union DEMOnstration power plant (EU DEMO). The helium gas with a pressure of 8 MPa is used as the coolant, EUROFER is used as the structural material, advanced ceramic breeder pebbles are used as the tritium breeder, and Be12Ti is used as the neutron multiplier material. In contrast to the former HCPB cooling plate configuration, the fuel breeder pin assemblies greatly reduce the pressure drop, reducing the circulating power to the level where state-of-the-art helium turbomachinery can be used. However, because of the reduced coolant velocity in the breeder zone, the heat transfer performance is compromised, especially in the annular channel of the fuel breeder pins. An increased surface roughness is therefore proposed as a heat transfer augmentation technique for the fuel breeder pins. Although heat transfer augmentation using artificial roughness is common, it is relatively novel for small annular gaps with moderate velocity as the ones in the fuel breeder pins. Currently, a dedicated correlation for the small annular rough-wall channel is available to predict the Nu number. This correlation is wished here to be benchmarked and validated experimentally. Therefore, an experimental investigation on a fuel breeder pin mock-up (mock-up 1) is planned. Additionally, based on computational fluid dynamics calculation, unsteady, nonuniform flow patterns were found at the return flow after the jet impingement in the first-wall region. Another upscaled mock-up (mock-up 2) to investigate the nonuniform flow patterns of the return flow in the annular channel of the fuel breeder pin is planned. The dedicated experimental campaigns are foreseen at the Helium Loop Karlsruhe (HELOKA) in KIT as validation and proof-of-concept test rigs for this enhanced pin design. In this paper, the motivation and the preliminary design of these two mock-ups of the enhanced EU DEMO HCPB blanket are shown, together with the plan for the foreseen experiments.