ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Guangming Zhou, Bradut-Eugen Ghidersa, Francisco A. Hernández, Qinlan Kang, Heiko Neuberger
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1016-1023
Technical Paper | doi.org/10.1080/15361055.2019.1629247
Articles are hosted by Taylor and Francis Online.
Within the framework of EUROfusion activities, the helium cooled pebble bed (HCPB) breeding blanket is under development in Karlsruhe Institute of Technology (KIT). The enhanced HCPB, using a fissionlike fuel breeder pin assembly configuration, is proposed as the near-term breeding blanket for the European Union DEMOnstration power plant (EU DEMO). The helium gas with a pressure of 8 MPa is used as the coolant, EUROFER is used as the structural material, advanced ceramic breeder pebbles are used as the tritium breeder, and Be12Ti is used as the neutron multiplier material. In contrast to the former HCPB cooling plate configuration, the fuel breeder pin assemblies greatly reduce the pressure drop, reducing the circulating power to the level where state-of-the-art helium turbomachinery can be used. However, because of the reduced coolant velocity in the breeder zone, the heat transfer performance is compromised, especially in the annular channel of the fuel breeder pins. An increased surface roughness is therefore proposed as a heat transfer augmentation technique for the fuel breeder pins. Although heat transfer augmentation using artificial roughness is common, it is relatively novel for small annular gaps with moderate velocity as the ones in the fuel breeder pins. Currently, a dedicated correlation for the small annular rough-wall channel is available to predict the Nu number. This correlation is wished here to be benchmarked and validated experimentally. Therefore, an experimental investigation on a fuel breeder pin mock-up (mock-up 1) is planned. Additionally, based on computational fluid dynamics calculation, unsteady, nonuniform flow patterns were found at the return flow after the jet impingement in the first-wall region. Another upscaled mock-up (mock-up 2) to investigate the nonuniform flow patterns of the return flow in the annular channel of the fuel breeder pin is planned. The dedicated experimental campaigns are foreseen at the Helium Loop Karlsruhe (HELOKA) in KIT as validation and proof-of-concept test rigs for this enhanced pin design. In this paper, the motivation and the preliminary design of these two mock-ups of the enhanced EU DEMO HCPB blanket are shown, together with the plan for the foreseen experiments.