ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
C. Koehly, L. Bühler, C. Mistrangelo
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1010-1015
Technical Paper | doi.org/10.1080/15361055.2019.1607705
Articles are hosted by Taylor and Francis Online.
The water-cooled lead lithium (WCLL) blanket is one of the European concepts for a Demonstration nuclear fusion reactor (DEMO). The spatial distribution of the water-cooling pipes inside the liquid metal blanket breeder zone is a critical issue since efficient heat removal from the liquid metal has to be ensured, avoiding local hot spots in the fluid or in blanket walls. Convective motion, driven by density gradients due to volumetric heat sources in the liquid breeder and heat removal by cooling pipes, is affected by magnetohydrodynamic interactions of the electrically conducting lead lithium with the external magnetic field. For the recent complex design of the DEMO WCLL blanket, prediction of the liquid metal flow is quite difficult. Preliminary numerical and experimental studies are necessary to determine the flow distribution resulting from the combined interaction of electromagnetic forces, buoyancy, and pressure. A test section based on a simplified model geometry supported by preliminary numerical simulations has been designed for experiments in the MEKKA laboratory at the Karlsruhe Institute of Technology and is presented in this paper.