ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. E. Rensink, T. D. Rognlien, C. E. Kessel
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 959-972
Technical Paper | doi.org/10.1080/15361055.2019.1643686
Articles are hosted by Taylor and Francis Online.
The viability of using liquid-lithium walls for the divertor and main chamber surfaces for a Fusion Nuclear Science Facility (FNSF) is analyzed from the point of view of the edge-plasma region that separates the hot core plasma from the surrounding material walls. The edge plasma is modeled by the UEDGE two-dimensional multifluid transport code that evolves equations for the density, momentum, and temperature of a 50%/50% mixture of deuterium-tritium (DT) ions, impurity ions, and electrons. Neutral DT and impurity gases are represented by neutral fluid equations. The primary inputs from the FNSF design are the magnetic configuration, plasma-facing-surface locations, core plasma exhaust power, and core boundary DT ion density. Lithium sources and sinks due to evaporation and condensation on the plasma-facing surfaces are parameters. The results show that a highly radiating divertor plasma, detached from the divertor plates, can be formed where >90% of the exhaust power is radiated by lithium with a broad deposition profile on plasma-facing surfaces that yields peak heat fluxes in the range of 2 MW/m2. The detached configuration is dominated by lithium plasma in the divertor and by hydrogen plasma upstream adjacent to the core boundary. A nonnegligible low level of lithium is found upstream at the outer midplane, typically in the range of 3% to 20%, that represents a potential core DT fuel dilution problem. An important physical mechanism is the collisional thermal force acting between ion species that can push impurities upstream along the magnetic field lines. Results show that the effect of reduced DT recycling at lithium surfaces due to hydride formation does not significantly affect the stability and radiative efficiency of the lithium divertor.