ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
M. E. Rensink, T. D. Rognlien, C. E. Kessel
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 959-972
Technical Paper | doi.org/10.1080/15361055.2019.1643686
Articles are hosted by Taylor and Francis Online.
The viability of using liquid-lithium walls for the divertor and main chamber surfaces for a Fusion Nuclear Science Facility (FNSF) is analyzed from the point of view of the edge-plasma region that separates the hot core plasma from the surrounding material walls. The edge plasma is modeled by the UEDGE two-dimensional multifluid transport code that evolves equations for the density, momentum, and temperature of a 50%/50% mixture of deuterium-tritium (DT) ions, impurity ions, and electrons. Neutral DT and impurity gases are represented by neutral fluid equations. The primary inputs from the FNSF design are the magnetic configuration, plasma-facing-surface locations, core plasma exhaust power, and core boundary DT ion density. Lithium sources and sinks due to evaporation and condensation on the plasma-facing surfaces are parameters. The results show that a highly radiating divertor plasma, detached from the divertor plates, can be formed where >90% of the exhaust power is radiated by lithium with a broad deposition profile on plasma-facing surfaces that yields peak heat fluxes in the range of 2 MW/m2. The detached configuration is dominated by lithium plasma in the divertor and by hydrogen plasma upstream adjacent to the core boundary. A nonnegligible low level of lithium is found upstream at the outer midplane, typically in the range of 3% to 20%, that represents a potential core DT fuel dilution problem. An important physical mechanism is the collisional thermal force acting between ion species that can push impurities upstream along the magnetic field lines. Results show that the effect of reduced DT recycling at lithium surfaces due to hydride formation does not significantly affect the stability and radiative efficiency of the lithium divertor.