ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Sergey Smolentsev, Thomas Rognlien, Mark Tillack, Lester Waganer, Charles Kessel
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 939-958
Technical Paper | doi.org/10.1080/15361055.2019.1610649
Articles are hosted by Taylor and Francis Online.
The Fusion Energy System Studies (FESS) Fusion Nuclear Science Facility (FNSF) project team in the United States is examining the use of liquid metals (LMs) for plasma-facing components (PFCs). Our approach has been to utilize an already established fusion design, FESS-FNSF, which is a tokamak-based machine with 518 MW fusion power, a 4.8-m major radius, a 1.2-m minor radius, and a machine average neutron wall loading of ~1 MW/m2. For this design, we propose a PFC concept that integrates a flowing LM first wall (FW) and an open-surface divertor. The flowing LM first removes the surface heat flux from the FW and then proceeds to the lower section of the vacuum chamber to form a large area LM surface for absorbing high peak surface heat flux in the divertor region. In pursuing the application of large open LM surfaces in the FNSF, two new computer codes have been developed and then applied to the analysis of free-surface magnetohydrodynamic flows and heat transfer, including fast thin flowing liquid layers over the solid FW (liquid wall), a tublike divertor, and a fast flow divertor. The analysis is aimed at optimization of the liquid wall design by matching certain proposed design criteria and also at evaluation of the maximum heat fluxes, using liquid lithium (Li) as a working fluid. It was demonstrated that the flowing Li FW (at ~2 cm and ~10 m/s) can tolerate a surface heat flux of ~1 MW/m2, while the open-surface Li divertor can remove a maximum high peak heat flux of 10 MW/m2. The paper also focuses on the underlying science. One such example is the evaluation and characterization of heat transfer mechanisms and heat transfer intensification in the tublike Li divertor.