ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
A. Khodak, C. Kessel, M. Tillack
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 930-938
Technical Paper | doi.org/10.1080/15361055.2019.1643689
Articles are hosted by Taylor and Francis Online.
Liquid metal (LM) plasma-facing components (PFCs) have the potential to alleviate some of the difficult constraints of solid PFCs. The solid substrate that supports these liquids would see only neutron irradiation and is protected from the plasma. Lithium or lithium eutectics would have a high affinity for tritium and deuterium at low operating temperatures and would provide a low recycling environment for the core plasma that seems to provide significant confinement improvements in existing plasma experiments. Liquid metals have sufficient thermal conductivity for good thermal conduction and can provide vapor shielding under transient heat loads. On the other hand, electrically conducting liquids will have magnetohydrodynamic (MHD) interactions that can disturb the surface allowing material to enter the plasma and can laminarize the flow, thereby reducing turbulence and convective heat transport. Sputtering and evaporation must be controlled by limiting the operating temperature. The substrate material must remain covered to survive, and the design for how the LM enters and exits the plasma chamber or divertor region needs to be identified. The present contribution introduces a liquid lithium free-surface cooling system into a future fusion device design developed for the Fusion Nuclear Science Facility (FNSF) program. The design includes LM PFCs covering convex divertor surfaces as well as lithium supply and removal lines. Three-dimensional analysis of the proposed design was performed using a highly customized version of the ANSYS CFX code applying methods of computational fluid dynamics. MHD was introduced using a magneto vector potential approach, allowing a natural interface. Free-surface flow was included using a volume of fluid approach with surface tension on the fluid vacuum interface. Electromagnetic equations were solved for LM as well as for solid components and vacuum. Special stabilization procedures were derived and applied to improve the convergence of the momentum equations with the source terms due to Lorentz force and surface tension. Conjugate heat transfer analysis was performed in LM and solid components. The numerical model was validated using analytical MHD solutions for high Hartmann number flow as well as relevant experimental results. Numerical solutions were obtained for the design configuration including FNSF geometry and Fusion Energy System Studies device parameters obtained from the system studies. Results of the analysis allow determination of the parameter range for the operation of the proposed design as well as design optimization.