ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
A. Khodak, C. Kessel, M. Tillack
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 930-938
Technical Paper | doi.org/10.1080/15361055.2019.1643689
Articles are hosted by Taylor and Francis Online.
Liquid metal (LM) plasma-facing components (PFCs) have the potential to alleviate some of the difficult constraints of solid PFCs. The solid substrate that supports these liquids would see only neutron irradiation and is protected from the plasma. Lithium or lithium eutectics would have a high affinity for tritium and deuterium at low operating temperatures and would provide a low recycling environment for the core plasma that seems to provide significant confinement improvements in existing plasma experiments. Liquid metals have sufficient thermal conductivity for good thermal conduction and can provide vapor shielding under transient heat loads. On the other hand, electrically conducting liquids will have magnetohydrodynamic (MHD) interactions that can disturb the surface allowing material to enter the plasma and can laminarize the flow, thereby reducing turbulence and convective heat transport. Sputtering and evaporation must be controlled by limiting the operating temperature. The substrate material must remain covered to survive, and the design for how the LM enters and exits the plasma chamber or divertor region needs to be identified. The present contribution introduces a liquid lithium free-surface cooling system into a future fusion device design developed for the Fusion Nuclear Science Facility (FNSF) program. The design includes LM PFCs covering convex divertor surfaces as well as lithium supply and removal lines. Three-dimensional analysis of the proposed design was performed using a highly customized version of the ANSYS CFX code applying methods of computational fluid dynamics. MHD was introduced using a magneto vector potential approach, allowing a natural interface. Free-surface flow was included using a volume of fluid approach with surface tension on the fluid vacuum interface. Electromagnetic equations were solved for LM as well as for solid components and vacuum. Special stabilization procedures were derived and applied to improve the convergence of the momentum equations with the source terms due to Lorentz force and surface tension. Conjugate heat transfer analysis was performed in LM and solid components. The numerical model was validated using analytical MHD solutions for high Hartmann number flow as well as relevant experimental results. Numerical solutions were obtained for the design configuration including FNSF geometry and Fusion Energy System Studies device parameters obtained from the system studies. Results of the analysis allow determination of the parameter range for the operation of the proposed design as well as design optimization.