ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
James Blanchard, Carl Martin
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 918-929
Technical Paper | doi.org/10.1080/15361055.2019.1602399
Articles are hosted by Taylor and Francis Online.
The Fusion Nuclear Science Facility (FNSF) is an intermediate step in the path to commercial fusion energy that will accommodate the extreme fusion nuclear environment and the complex integration of components and their environment as well as the relevant nuclear science and plasma physics. The transient thermal and electromagnetic loads on plasma-facing components in FNSF have been shown to offer significant design challenges that are difficult to meet with solid walls. Hence, the project team is investigating the feasibility of using liquid walls to ameliorate some of the risk associated with solid wall designs.
In this paper, we examine the effects these transient loads will have on a liquid wall. Mass loss is considered using standard evaporation models accounting for transient surface temperatures. The heat transfer is modeled with a one-dimensional transient conduction model that accounts for evaporative losses. No liquid motion is considered. Loss rates of tens of microns per edge-localized mode (ELM) are predicted. Peak heat fluxes are treated parametrically to help address the substantial uncertainty inherent in models for the timing and spatial distribution of the heat deposited during the ELM. Boiling is considered but is found to not be of consequence, as the temperatures required for homogeneous nucleation of bubbles are substantially higher than a conventional boiling point. It should be noted that all evaporation calculations are for evaporation into a vacuum. In the future, we intend to incorporate these evaporation rates into an edge physics code to self-consistently model the net mass flows at the liquid surface in a tokamak.
Electromagnetic effects due to ELMs and disruptions are accounted for by assuming a stationary plasma quench. ELMs are addressed assuming a small fluctuation in the plasma current during an event, while disruptions are addressed assuming a full quench of the current. The variation in the plasma current induces currents in the conducting fluid, leading to forces on the liquid (and subsequent motion). A commercial finite element code is used to calculate the induced currents and forces associated with a static liquid divertor. Liquid motion is not considered in this calculation, so no magnetohydrodynamic (MHD) currents are addressed, but a simplified model is presented to estimate the impact of these currents on the liquid motion. Based on these calculations, the acceleration of the liquid is expected to be quite high, and containment of the liquid is likely not possible. The MHD effects appear to be relatively minor.