ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Han Zhang, Peter Titus, Arthur Brooks, Joseph Petrella, Stefan Gerhardt, Dang Cai, Mark Smith, Feng Cai, Ankita Jariwala, Peter Dugan
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 849-861
Technical Paper | doi.org/10.1080/15361055.2019.1643687
Articles are hosted by Taylor and Francis Online.
The NSTX-U recovery project will deploy new plasma-facing components (PFCs) to meet the updated high heat flux requirements, increased heating power, and longer pulse durations compared with NSTX. Many components have been redesigned and replaced. To address the influence of high heat load, heat transfer, and distribution in the whole machine, an ANSYS two-dimensional (2-D) model was built for the global thermal analysis of NSTX-U recovery. This 2-D model includes most of the aspects of the updated design of the center stack casing first wall, new inboard divertor and cooling plate, updated outboard divertor, etc. It models the radiative surfaces of almost all the in-vessel components, vessel, insulation, and cooled coils. It models the convection heat exchange on all the out-of-vessel components and environment. Thee water cooling of coils, casing, and vessel, and helium heating and cooling of PFCs are included, too. Heat loads of normal operation are from the plasma energy deposition of five predefined typical thermal scenarios. Heat sources for bakeout are from Joule heat generation, helium gas, and hot water heating.
The results of this global model are used to predict temperature ratcheting and heat distribution of different thermal scenarios, to understand heat transfer and heat removal for bakeout, to evaluate different cooling schemes for operation and heating schemes for bakeout, and to estimate heat loads to the cooling system of the Ohmic heating and Poroidal field coils, heat loss from the system, etc. The temperature and heat flux results are also used as the base and comparison for the detailed thermal analyses of the substructures. This global model is also being converted to a structural model to evaluate thermal growth and thermal stresses. Thermal loads can be mapped to detailed three-dimensional structural models and combined with electromagnetic loads to evaluate different component designs.