ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Han Zhang, Peter Titus, Arthur Brooks, Joseph Petrella, Stefan Gerhardt, Dang Cai, Mark Smith, Feng Cai, Ankita Jariwala, Peter Dugan
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 849-861
Technical Paper | doi.org/10.1080/15361055.2019.1643687
Articles are hosted by Taylor and Francis Online.
The NSTX-U recovery project will deploy new plasma-facing components (PFCs) to meet the updated high heat flux requirements, increased heating power, and longer pulse durations compared with NSTX. Many components have been redesigned and replaced. To address the influence of high heat load, heat transfer, and distribution in the whole machine, an ANSYS two-dimensional (2-D) model was built for the global thermal analysis of NSTX-U recovery. This 2-D model includes most of the aspects of the updated design of the center stack casing first wall, new inboard divertor and cooling plate, updated outboard divertor, etc. It models the radiative surfaces of almost all the in-vessel components, vessel, insulation, and cooled coils. It models the convection heat exchange on all the out-of-vessel components and environment. Thee water cooling of coils, casing, and vessel, and helium heating and cooling of PFCs are included, too. Heat loads of normal operation are from the plasma energy deposition of five predefined typical thermal scenarios. Heat sources for bakeout are from Joule heat generation, helium gas, and hot water heating.
The results of this global model are used to predict temperature ratcheting and heat distribution of different thermal scenarios, to understand heat transfer and heat removal for bakeout, to evaluate different cooling schemes for operation and heating schemes for bakeout, and to estimate heat loads to the cooling system of the Ohmic heating and Poroidal field coils, heat loss from the system, etc. The temperature and heat flux results are also used as the base and comparison for the detailed thermal analyses of the substructures. This global model is also being converted to a structural model to evaluate thermal growth and thermal stresses. Thermal loads can be mapped to detailed three-dimensional structural models and combined with electromagnetic loads to evaluate different component designs.