ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Donato Lioce, Sergio Orlandi, Moustafa Moteleb, Andrea Ciampichetti, Lionel Afzali, Nicolas Ghirelli, Bin Guo, Marco Tomasello, Daniel Whitted, Marco Giammei, Seokho Kim, Walter Van Hove, Andrei Petrov
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 841-848
Technical Paper | doi.org/10.1080/15361055.2019.1644135
Articles are hosted by Taylor and Francis Online.
The tokamak cooling water system (TCWS) is the primary cooling system of the ITER tokamak machine, providing cooling water to the vacuum vessel and in-vacuum vessel components. In addition, it provides water and gas baking to its clients as well as drying them prior to maintenance activities. It is a Safety Important System that is subject to the French Order on Nuclear Pressure Equipment. The TCWS design has been modified significantly since the preliminary design. Such changes required the approval of the French Nuclear Safety Authority (ASN). The first main modification was to relocate the main equipment of the cooling loop for in-vessel components from level L4 to level L3 of the Tokamak Building in order to improve the overall building shielding capacities, and the second dealt with the ability of the TCWS to significantly reduce the mass and energy released in case of a loss-of-coolant accident (LOCA). This second improvement was required to allow a strong improvement of the vacuum vessel pressure suppression system (VVPSS), i.e., the system that prevents overpressure in the vacuum vessel in case of a LOCA. The green light for the two aforementioned modifications of the TCWS (together with the new VVPSS configuration) has been recently obtained from the ASN. Most recently, the three major subsystems of the TCWS needed for first plasma operations (to start the end of 2025) have passed the final design review process. The final design has been approved and procurement/manufacturing has started. In addition, the final design of all piping not functionally required for first plasma operation but nevertheless needed due to installation constraints has been reviewed and approved as well. A few kilometers of nuclear-grade piping have been delivered to the ITER Organization (IO) together with the main drain tanks of the system. All the other components are expected to be received on site starting May 2021. This paper gives a detailed description and status of the main TCWS subsystems needed for first plasma either because they are functionally required or because of installation constraints. The major modifications highlighted above as well as all the improvements accomplished in the final design are also detailed, together with a status on procurement and construction activities.