ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Roman Rozenblat, Egemen Kolemen, Florian M. Laggner, Christopher Freeman, Greg Tchilinguirian, Paul Sichta, Gretchen Zimmer
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 835-840
Technical Paper | doi.org/10.1080/15361055.2019.1658037
Articles are hosted by Taylor and Francis Online.
The Thomson scattering (TS) diagnostic on the National Spherical Tokamak eXperiment Upgrade (NSTX-U) has been an essential system for many operational campaigns due to its function of measuring plasma electron density and temperature. Constructive feedback to improve the next plasma discharge, however, has been limited because of in-between shots analysis. Plasma control, therefore, desires a diagnostic system that is real-time capable. This contribution presents the development of software that demonstrates the feasibility of a real-time TS diagnostic system for NSTX-U. The developed software is able to evaluate the electron temperature and density within 2.5 ms.
The overall system requirement is specified by a 60-Hz timing cycle, which is driven by the TS laser pulse rate. The real-time software processes the peak amplitudes of the detected photons, evaluates the electron temperature and density, and then outputs them to an analog output card that is used to interface with the NSTX-U control. The real-time software is implemented in an object-oriented architecture using C++11. C++11 software components include Abstract class, Atomic data types for synchronization, and a Hash data structure. The software application makes use of multiple threads that run concurrently: a thread to acquire the photon peak amplitude and feed a circular buffer, threads to evaluate the electron density and temperatures, and a thread that supplies corresponding output voltages and feeds the output card.
In summary, the new real-time TS system has been proven to meet the 60-Hz system requirement. For this reason, the software implementation was deemed successful. In future NSTX-U campaigns, this diagnostic will be a great asset enabling real-time plasma density and temperature control.