ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Eric Morris, Kevin F. Freudenberg, Leonard Myatt, Travis Reagan, Wayne Reiersen
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 815-822
Technical Paper | doi.org/10.1080/15361055.2019.1629250
Articles are hosted by Taylor and Francis Online.
The central solenoid (CS) consists of six large high field superconducting magnets (also known as modules) approximately 4 m in diameter and 2 m tall that weigh approximately 120 tonnes each. These large and complex modules create challenges during assembly of the CS that require the development of custom assembly tooling such as the CS lifting fixture. The CS module lifting fixture is designed to lift and stack the six CS modules in the assembly building on the ITER site. Because of its unique design, fabrication, and assembly features, no lifting attachments could be incorporated within or under the CS modules. This limitation motivated the development of a friction-based lift fixture. The design and evaluation of the CS module lifting fixture considered both worker safety and investment protection, and the assessments were performed to international codes and standards. The CS module lifting fixture consists of two principal subassemblies: spider assembly and ring weldment. These subassemblies allow the frictional force to be augmented by the mechanical advantage of shallow-angle wedges. Large radial preloads created by both screw jack assemblies and the weight of a CS module develop frictional forces capable of performing a lift with a safety factor of at least 2. The design effort resulted in the use of low friction linear bearings on angle surfaces to ensure constant pressure, integrated jacks for pretensioning the fixture prior to lifting, and load pin strain gauges for monitoring the normal force. Testing of various materials and surface treatments led to the selection of laminated aluminum and rubber pads as the friction interface on the CS lifting fixture side and a grit-blasted Nitronic 50 stainless steel band on the CS module side. A redundant lifting method using the module slings between the spider and module is also utilized after the initial friction lift. The CS lifting fixture provides a safe and reliable solution for lifting and stacking the CS module during assembly.