ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Joseph R. Petrella, Jr., Michael J. D’Agostino, Mark Cropper, Jessica Guttenfelder
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 810-814
Technical Paper | doi.org/10.1080/15361055.2019.1622989
Articles are hosted by Taylor and Francis Online.
An electrical insulation web winding and optical inspection system has been developed to provide semiautomatic material handling and machine vision inspection of composite electromagnet coil insulation materials. Composite electrical insulation for electromagnet conductor insulation typically comprises a nonconductive woven filler (typically S-Glass), nonconductive film (typically Kapton®), and fixating resin. Prior to the subject system, the stock woven filler and film used to assemble the composite structure were inspected manually for dimensional and foreign matter presence, which did not provide 100% inspection. The subject system features a web handling reel-to-reel transfer mechanism that includes an open-loop web positional alignment device to maintain the web centerline position. A machine vision system is used to optically inspect passing web materials for dimensional defects and foreign materials. This system is capable of inspection of single web woven filler material and/or colaminated woven filler material and nonconductive film. A detected defect automatically terminates web movement, generates an alarm, and records images of the defects on a media storage device. Prototype material inspections performed by the subject machine on approximately 21 567 m (70 759 ft) of material detected 174 pieces of debris.