ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Jason Wilson, James Becnel, David Demange, Bernice Rogers
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 802-809
Technical Paper | doi.org/10.1080/15361055.2019.1629249
Articles are hosted by Taylor and Francis Online.
The tokamak exhaust processing (TEP) system performs chemical separations on ITER fuel cycle process streams. TEP recovers hydrogen isotopes (Q2) from impurities such as argon, nitrogen, tritiated water (Q2O), tritiated ammonia (NQ3), and tritiated hydrocarbons such as methane (CQ4). TEP sends the hydrogen isotopes for subsequent processing to the isotope separation system or the storage and delivery system. At the same time, an impurity gas stream of extremely low tritium content (less than 8.88 TBq of tritium per day) is produced and sent to the detritiation system (DS). To accomplish the separation, the major hydrogen processing subsystems within TEP are hydrogen-like processing (HLP) and air-like processing/water-like processing (ALP/WLP). (Hydrogen-like gases are Q2, He, and Ne; air-like gases are Ar, O2, N2, O2, and CQ4; and water-like gases are Q2O and NQ3). The main processing equipment used for the HLP is a series of palladium-silver permeators (PMs) with ALP/WLP using a series of Palladium Membrane Reactors (PMRs). Aspen Dynamics is the primary tool for verifying system performance of the TEP design. Aspen Dynamics is a commercial, equation-based simulation package for chemical processing. The software enables the user to develop a process model from predefined unit-operation models or construct its own unique unit-operations model. Verification of the TEP simulation model to experimental data was achieved during the TEP conceptual design. The designs for the TEP HLP and ALP/WLP subsystems are examined for the updated gas inputs in terms of compositions and flow rates. The TEP simulation is used to predict tritium output of the TEP processing subsystems This paper describes how the Aspen model of the equipment was improved and used to size the equipment (PMs and PMRs) to process the various gas streams and maintain the discharge to DS to below the limit.