ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jason Wilson, James Becnel, David Demange, Bernice Rogers
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 802-809
Technical Paper | doi.org/10.1080/15361055.2019.1629249
Articles are hosted by Taylor and Francis Online.
The tokamak exhaust processing (TEP) system performs chemical separations on ITER fuel cycle process streams. TEP recovers hydrogen isotopes (Q2) from impurities such as argon, nitrogen, tritiated water (Q2O), tritiated ammonia (NQ3), and tritiated hydrocarbons such as methane (CQ4). TEP sends the hydrogen isotopes for subsequent processing to the isotope separation system or the storage and delivery system. At the same time, an impurity gas stream of extremely low tritium content (less than 8.88 TBq of tritium per day) is produced and sent to the detritiation system (DS). To accomplish the separation, the major hydrogen processing subsystems within TEP are hydrogen-like processing (HLP) and air-like processing/water-like processing (ALP/WLP). (Hydrogen-like gases are Q2, He, and Ne; air-like gases are Ar, O2, N2, O2, and CQ4; and water-like gases are Q2O and NQ3). The main processing equipment used for the HLP is a series of palladium-silver permeators (PMs) with ALP/WLP using a series of Palladium Membrane Reactors (PMRs). Aspen Dynamics is the primary tool for verifying system performance of the TEP design. Aspen Dynamics is a commercial, equation-based simulation package for chemical processing. The software enables the user to develop a process model from predefined unit-operation models or construct its own unique unit-operations model. Verification of the TEP simulation model to experimental data was achieved during the TEP conceptual design. The designs for the TEP HLP and ALP/WLP subsystems are examined for the updated gas inputs in terms of compositions and flow rates. The TEP simulation is used to predict tritium output of the TEP processing subsystems This paper describes how the Aspen model of the equipment was improved and used to size the equipment (PMs and PMRs) to process the various gas streams and maintain the discharge to DS to below the limit.