ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Jason Wilson, James Becnel, David Demange, Bernice Rogers
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 794-801
Technical Paper | doi.org/10.1080/15361055.2019.1642089
Articles are hosted by Taylor and Francis Online.
The ITER fuel cycle is composed of a tokamak and several systems that will support the preparation of fuel, the handling of exhaust gases, and the recycle of unused fuel back to the tokamak. Deuterium and tritium (DT) isotopes are supplied to the tokamak. A key need for such separations arises from the fact that, of the DT fed to the ITER tokamak, only a small fraction burns. The unburned DT exits the tokamak along with impurity gases. The impurities are a rather complicated mixture including helium ash, non-DT gases injected into the tokamak, species originating from chemical reactions, and species originating from nuclear reactions. Exhaust gases from the torus are collected by pumps, which move the exhaust material to the tokamak exhaust process (TEP) system. The TEP system performs chemical separations on ITER fuel cycle process streams. The TEP recovers hydrogen isotopes from impurities such as argon, nitrogen, water, ammonia, and hydrocarbons. The TEP sends the hydrogen isotopes for subsequent processing to the isotope separation system or the storage and delivery system. At the same time, an impurity gas stream of extremely low tritium content (less than 8.88 TBq of tritium per day) is sent to the detritiation system. Since the TEP system completed conceptual design in 2010, the overall ITER design has advanced on a number of fronts. These advancements have affected the interfacing systems and operational scenarios that could have affected the design of the TEP system. The interfacing and operational changes were examined and new performance requirements for the TEP were determined. The TEP design was evaluated to determine if the design was flexible and robust enough to meet the performance and discharge requirements.