ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Jason Wilson, James Becnel, David Demange, Bernice Rogers
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 794-801
Technical Paper | doi.org/10.1080/15361055.2019.1642089
Articles are hosted by Taylor and Francis Online.
The ITER fuel cycle is composed of a tokamak and several systems that will support the preparation of fuel, the handling of exhaust gases, and the recycle of unused fuel back to the tokamak. Deuterium and tritium (DT) isotopes are supplied to the tokamak. A key need for such separations arises from the fact that, of the DT fed to the ITER tokamak, only a small fraction burns. The unburned DT exits the tokamak along with impurity gases. The impurities are a rather complicated mixture including helium ash, non-DT gases injected into the tokamak, species originating from chemical reactions, and species originating from nuclear reactions. Exhaust gases from the torus are collected by pumps, which move the exhaust material to the tokamak exhaust process (TEP) system. The TEP system performs chemical separations on ITER fuel cycle process streams. The TEP recovers hydrogen isotopes from impurities such as argon, nitrogen, water, ammonia, and hydrocarbons. The TEP sends the hydrogen isotopes for subsequent processing to the isotope separation system or the storage and delivery system. At the same time, an impurity gas stream of extremely low tritium content (less than 8.88 TBq of tritium per day) is sent to the detritiation system. Since the TEP system completed conceptual design in 2010, the overall ITER design has advanced on a number of fronts. These advancements have affected the interfacing systems and operational scenarios that could have affected the design of the TEP system. The interfacing and operational changes were examined and new performance requirements for the TEP were determined. The TEP design was evaluated to determine if the design was flexible and robust enough to meet the performance and discharge requirements.