ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Thomas Rummel, Konrad Riße, Michael Nagel, Thomas Mönnich, Matthias Schneider, Frank Füllenbach, Hans-Stephan Bosch, the W7-X Team
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 786-793
Technical Paper | doi.org/10.1080/15361055.2019.1629248
Articles are hosted by Taylor and Francis Online.
The Wendelstein 7-X (W7-X) experimental fusion device went into operation in 2015 after intensive commissioning. Meanwhile, the third plasma operation phase started and ran until October 2018. W7-X has three magnet systems. The superconducting magnet system creates the main magnetic field of W7-X. It consists of 70 superconducting coils, divided into seven individual circuits with ten coils each. Seven equal power supplies provide the electrical current to power the magnets. Seven magnet protection systems are also part of the system. A magnet protection system allows fast discharge of the magnets in case of severe failures, e.g., a quench that means a sudden transition from the superconducting to the normal conducting state. A special sensor system, the quench detection system, checks the status of the magnets continuously. During each of the operation phases, the superconducting magnet system is kept under cryogenic conditions at about 4 K. For that, a helium refrigerator with total power of 7 kW at 4.5 K runs steady state 24/7. The second magnet system is the trim coil system, a set of five copper coils, placed at the outer side of the machine cryostat. The coils are powered by five identical power supplies. The third magnet system is the control coil system, a set of ten copper coils, placed inside of the plasma vessel behind the divertor targets. Ten 4-quadrant power supplies power each coil separately. The power supplies can deliver bidirectional direct currents and, as per request by the experimental program, an alternating current with adjustable frequencies between 1 and 20 Hz. An operation phase of W7-X comprises about 20 weeks. During the phase, the magnet systems are normally operated 2 or 3 days per week. The superconducting magnet system is usually switched on in the morning, kept energized during the day, and ramped down in the evening. This paper analyzes the operation phases, reports on the issues during the operation, and names countermeasures and improvements performed during the breaks between the operation phases.