ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Y. Zhai, C. Neumeyer, J. Dellas, N. Greenough, M. Kalish, J. Petrella, W. Que, S. Raftopoulos, and the NSTX-U Coil Test Team
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 775-785
Technical Paper | doi.org/10.1080/15361055.2019.1610314
Articles are hosted by Taylor and Francis Online.
The National Spherical Torus eXperiment Upgrade (NSTX-U) is an innovative magnetic fusion device constructed at the Princeton Plasma Physics Laboratory (PPPL). In 2016, because of the failure of the PF-1a upper divertor coil, which experienced a coolant blockage, the NSTX-U operation was suspended. A postmortem investigation indicated that an undetected gradual deterioration of coil inductance preceded the coolant blockage leading up to the operational suspension. The project team decided that all inner poiloidal field (PF) upper and lower coil pairs, denoted PF-1a, PF-1b, and PF-1c, shall be replaced with new coils of improved design and manufacture. The new prototype inner PF coils from four suppliers across the globe were evaluated at PPPL following a prototype technical evaluation procedure. Mechanical inspection and electrical testing were performed to qualify each supplier.
This paper discusses the details of the mechanical and electrical tests and measurements performed on the complete coils. The test results were used to assess quality of turn-to-turn and turn-to-ground insulations of the prototype coils. Two prototype coils were power tested at PPPL for five pulses to reach its rated current and maximum temperature following the completion of low-power electrical testing. During pulses, the conductors experience a near adiabatic temperature rise and hoop stress. Between pulses, cold water enters the inlet, and a cooling wave propagates through the coils as slugs of cold water heat up to the conductor temperature and then pass through the coil to the outlet. Results show that full power testing did not change coil electrical characteristics. Each prototype coil was then sectioned into two halves to permit examination of the internal insulation, conductor spacing, and vacuum pressure impregnation quality. The high-voltage breakdown test of sectioned coils was performed to evaluate turn and ground insulation breakdown voltage. The estimate for the production coils is based largely on the experience learned from the prototype coil program. The first production coil will be delivered to PPPL for testing by January 2020.