ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. E. Gebhart, S. J. Meitner, L. R. Baylor
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 759-766
Technical Paper | doi.org/10.1080/15361055.2019.1592997
Articles are hosted by Taylor and Francis Online.
Mitigation of disruption events in future high energy density tokamaks is essential for machine longevity. The creation of runaway electrons, large electromagnetic forces, and high localized heat loads during a disruption can be devastating to machine components. Shattered pellet injection is currently the most effective method of disruption mitigation. Injection of cryogenically solidified deuterium, neon, or argon (or mixtures thereof) have been shown to efficiently radiate thermal energy of the plasma so that the heat load is distributed on the walls of the machine. Pellets are formed by desublimating gas in the barrel of a pipe gun and fired using a pulse of high-pressure light gas. Current gas gun designs cannot reach sufficient pressure to dislodge pure neon and argon pellets at low temperatures because the material strength is too high. Pellet temperatures must be kept low (to well below the triple-point temperature of the material) to ensure minimal gas flow into the machine due to vapor pressure of the pellet. A gas-driven punch device has been designed and tested to dislodge pure neon or argon pellets. The breakaway strength of a pellet is proportional to the surface area of the pellet in contact with the inner diameter of the barrel. As pellets get larger in diameter, the amount of force needed to dislodge them increases. To better understand the mechanics behind how a punch dislodges a pellet, a solenoid-operated punch was designed so that kinetic energy of the punch, when striking a pellet, can be varied by changing input current to the solenoid. This solenoid punch will be used to determine kinetic energy versus pellet surface area threshold for breakaway. These data will be used to design mechanical punches for use in a high-field tokamak environment. This paper outlines the modeling, design, experimental testing, and results of the punch development activities.