ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Gaetano Aiello, Theo Scherer, Konstantinos Avramidis, Natalia Casal, Thomas Franke, Mario Gagliardi, Gerd Gantenbein, Mark Henderson, John Jelonnek, Andreas Meier, Gabriella Saibene, Sabine Schreck, Dirk Strauss, Manfred Thumm, Minh Quang Tran, Christoph Wild, Eckhard Woerner
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 719-729
Technical Paper | doi.org/10.1080/15361055.2019.1643690
Articles are hosted by Taylor and Francis Online.
Nuclear fusion power plants require electron cyclotron (EC) heating and current drive (H&CD) systems for plasma heating and stabilization. High-power microwave beams between 1 and 2 MW generated by gyrotrons propagate in a dedicated waveguide transmission system to reach the plasma at specific locations. Key components in this transmission system are the chemical vapor deposition diamond windows on both the torus and gyrotron sides of the reactor as they allow transmission of high-power beams while acting as confinement and/or vacuum boundaries. Diamond windows consist of a polycrystalline diamond disk integrated in a metallic housing. In the conventional configuration, there is one disk perpendicular to the beam propagation direction. A steering mechanism is then used to deploy the fixed frequency beam at different locations in the plasma. This is, for instance, the configuration used in the ITER EC H&CD system. Movable parts close to the plasma will be problematic for the lifetime of launchers in future fusion reactors like the DEMOnstration nuclear fusion reactor (DEMO) because of the higher heat loads and neutron fluxes. Therefore, one of the alternative concepts is to deploy the beams directly at the desired resonant magnetic flux surface by frequency tuning gyrotrons. In this case, diamond windows able to work in a given frequency range, like the diamond Brewster-angle window, are required. It is an elegant and compact broadband window solution with the disk inclined at the Brewster angle with respect to the beam direction. This paper shows the development and the current state of different diamond window concepts including the design, the numerical analyses, and application of standard construction nuclear codes and of a specific qualification program.