ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. P. Allain
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 702-718
Technical Paper | doi.org/10.1080/15361055.2019.1647030
Articles are hosted by Taylor and Francis Online.
One of the most significant design challenges for materials performance exposed to extreme environments (e.g., heat, pressure, and radiation) is maintaining structural integrity while preventing or minimizing long-term damage. In a fusion nuclear reactor the expected operational environment is inherently extreme. The incident plasma will carry heat fluxes of the order of hundreds of MW‧m−2 and particle fluxes that can average 1024 m−2‧s−1 to plasma-facing components (PFCs). The fusion reactor wall will also need to operate at high temperatures near 800 C, and the incident energy of particles will vary from a few electron-volt ions to mega-electron-volt neutrons. The plasma-material interface is a critical region for design since material can be emitted both atomistically (e.g., through evaporation, sputtering, etc.) and/or macroscopically (i.e., during transient events, such as disruptions or edge-localized modes and dust generation) potentially poisoning the fusion plasma. Another challenge is the management of structural damage from neutrons up to hundreds of displacements per atom and transmuted He near 1000 atomic parts per million. Operating duty cycles will demand reliable performance over the course of not just seconds or minutes (i.e., as in most advanced fusion devices today and in the near future) but from months to years. Transformative innovations that can address these significant challenges are opening opportunities in adopting new and novel approaches. Controlling the architecture in advanced materials to tailor properties beyond structure and composition has provided a new paradigm in modern materials design. Tuning properties at localized regions of a cellular material to meet specific functional requirements introduces challenges to modern synthesis and advanced manufacturing methods. Beyond the design of bulk properties in cellular materials is the ability to also design smart, self-healing interfaces. This is particularly important for applications designing advanced materials for future reactor-relevant fusion environments. This paper will give an overview of both the technological gaps and the opportunities from advanced manufacturing that may enable the design of self-healing, adaptive materials for PFCs in future fusion reactor environments. Current progress as well as important innovation challenges will also be discussed.