ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. F. Caneses, P. A. Piotrowicz, T. M. Biewer, R. H. Goulding, C. Lau, M. Showers, J. Rapp
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 683-689
Technical Paper | doi.org/10.1080/15361055.2019.1622988
Articles are hosted by Taylor and Francis Online.
Linear plasma devices are cost-effective alternatives for testing materials under reactor-relevant divertor plasma conditions. An intense radio-frequency (RF) plasma source concept for the Material Plasma Exposure eXperiment (MPEX) is under development at Oak Ridge National Laboratory. The source concept, Proto-MPEX, aims to produce high-density background deuterium helicon plasmas that are subsequently heated with additional RF and microwave systems to deliver reactor-relevant conditions for studies on plasma-material interaction. In this work, we focus on the plasma-producing stage and its effectiveness in converting input neutral gas into plasma, namely, the neutral gas ionization efficiency. We provide a direct quantitative measurement of the ionization efficiency by measuring the total ion flux arriving at the target region relative to the neutral gas injected at the source. Using 80 kW at 13.56 MHz and a source magnetic field of 0.05 T, the helicon plasma source delivers ion fluxes up to and heat fluxes greater than 1 to a target plate located 2 m away from the source. Under these conditions, we observe that the plasma source converts ~89% of the input neutral gas into plasma that arrives at the target as ion flux at a rate of . We demonstrate that because of the large pumping capacity of the plasma, neutral gas pumping systems are required only in the target region to maintain optimal plasma operation.