ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Arnold Lumsdaine, Joseph B. Tipton, Jr., Dennis Youchison, Venu Varma, Kirby Logan, Juergen Rapp
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 674-682
Technical Paper | doi.org/10.1080/15361055.2019.1637239
Articles are hosted by Taylor and Francis Online.
The Material Plasma Exposure eXperiment (MPEX) steady-state linear plasma facility is currently under design at Oak Ridge National Laboratory. The facility proposes to produce ITER divertor-relevant plasma conditions with steady-state heat fluxes up to 10 MW/m2 with ion fluxes up to 1024/m2‧s. Plasmas will be produced from a helicon source with additional electron cyclotron and ion cyclotron heating, contained by superconducting magnets. MPEX will be capable of including targets that have been neutron irradiated from the High Flux Isotope Reactor (HFIR) in order to examine the effects of divertor-relevant plasma fluence on neutron-damaged materials. Targets can then be remotely transferred to an exchange chamber and moved into a handling station that is far from the MPEX magnets. Because of the high heat fluxes, the target must be actively cooled. Because the targets are activated, remote handling is required. The challenge of providing both active cooling and remote handling simultaneously has required a design and analysis effort that is the subject of this study.