ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. Rapp, A. Lumsdaine, C. J. Beers, T. M. Biewer, T. S. Bigelow, J. F. Caneses, J. B. O. Caughman, R. H. Goulding, N. Kafle, C. H. Lau, E. Lindquist, P. A. Piotrowicz, H. Ray, M. Showers, the MPEX Team
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 654-663
Technical Paper | doi.org/10.1080/15361055.2019.1610315
Articles are hosted by Taylor and Francis Online.
The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is being used to qualify the plasma source and heating systems for the Material Plasma Exposure eXperiment (MPEX). The MPEX will address important and urgent research needs on plasma material interactions for future fusion reactors. In MPEX, plasma-facing components (nonirradiated and a priori neutron irradiated) will be exposed to plasma conditions as they are expected in future fusion reactors. The MPEX, a steady-state device enabled by superconducting magnets, will be able to break into new ground by assessing plasma-facing materials and components at an ion fluence level in the range of 1030 to 1031 m−2. To achieve the relevant plasma conditions, high-density plasmas (>4 × 1019 m−3) are produced with a high-power helicon source. The so-produced low-temperature helicon plasma is then additionally heated with waves in the ion cyclotron resonance frequency and electron cyclotron resonance frequency domains. Proto-MPEX has achieved all key parameters (source ne, source Te, source Ti, target Te, target Ti, target ion flux, and target heat flux) within a factor of 2 of the design requirements of MPEX, albeit not simultaneously. These parameters were achieved with a total installed heating power of 330 kW, which is less than half of the planned heating power in the MPEX (800 kW). An overview of the latest results from Proto-MPEX is given. These results are shown in relationship to the MPEX system goals. Remaining necessary research and development tasks are discussed. The MPEX is currently in the conceptual design phase. The status of the design and an overview of the system requirements are presented.