ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sergey Pestchanyi, Francesco Maviglia
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 647-653
Technical Paper | doi.org/10.1080/15361055.2019.1643684
Articles are hosted by Taylor and Francis Online.
Simulation of divertor target damage during thermal quench of the disruption in the future DEMO tokamak has been performed using the TOKES code. This parametric study includes damage estimation for disruptions of the plasma energy E0 in the DEMO core in the range of 0.4 to 1.3 GJ and of time duration 1 to 2 ms. According to the simulations, the maximum melt depth on the divertor targets is ~80 μm, independent of the energy content in the core. The melted pool maximum area grows from ~20 m2 for 0.4-GJ disruption to ~120 m2 for 1.3-GJ disruption. Maximum erosion depth is 4 μm for 1.3-GJ disruption and decreases to less than 1 μm with decreasing E0. The total quantity of vaporized tungsten ranges from 2 ∙ 1021 to 3 ∙ 1024 atoms for disruptions of 0.4 to 1.3 GJ. An additional parametric study has revealed weak dependence of the results from the characteristic widths λq of the disruptive flux in the scrape-off layer.