ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
D. R. Patel, T. Koyanagi
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 636-641
Technical Paper | doi.org/10.1080/15361055.2019.1647029
Articles are hosted by Taylor and Francis Online.
Silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites have been widely investigated for potential fusion reactor applications. In this present investigation, the high-temperature creep performance of five types of SiC fibers is evaluated and microstructural analysis is performed. The creep behavior of the fibers was assessed by the bend stress relaxation method at various applied strains at 1500°C and 1700°C. The fibers tested include developmental-grade fibers with different residual silicon amounts (~0%, 2% to 3%, and 5% to 6%) fabricated by laser chemical vapor deposition at Free Form Fibers. Generally, the creep behavior of the Free Form (FF) fibers was similar to Hi-Nicalon Type S and/Tyranno-SA SiC fibers currently used for fabrication of SiC/SiC composites for fusion applications. However, all FF fibers exhibited the formation of pores after the creep tests at 1700°C regardless of residual silicon amount, which can be improved by further development via optimization of the composition and microstructure.