ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
D. R. Patel, T. Koyanagi
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 636-641
Technical Paper | doi.org/10.1080/15361055.2019.1647029
Articles are hosted by Taylor and Francis Online.
Silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites have been widely investigated for potential fusion reactor applications. In this present investigation, the high-temperature creep performance of five types of SiC fibers is evaluated and microstructural analysis is performed. The creep behavior of the fibers was assessed by the bend stress relaxation method at various applied strains at 1500°C and 1700°C. The fibers tested include developmental-grade fibers with different residual silicon amounts (~0%, 2% to 3%, and 5% to 6%) fabricated by laser chemical vapor deposition at Free Form Fibers. Generally, the creep behavior of the Free Form (FF) fibers was similar to Hi-Nicalon Type S and/Tyranno-SA SiC fibers currently used for fabrication of SiC/SiC composites for fusion applications. However, all FF fibers exhibited the formation of pores after the creep tests at 1700°C regardless of residual silicon amount, which can be improved by further development via optimization of the composition and microstructure.