ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. H. Goulding, P. A. Piotrowicz, C. J. Beers, T. M. Biewer, J. F. Caneses, J. B. O. Caughman, N. Kafle, E. G. Lindquist, H. A. Ray, J. Rapp, M. A. Showers
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 614-620
Technical Paper | doi.org/10.1080/15361055.2019.1623569
Articles are hosted by Taylor and Francis Online.
Ion cyclotron heating (ICH) at a frequency in the 6- to 9-MHz range with electron heating in the 28- to 105-GHz range will be used in the Material Plasma Exposure eXperiment (MPEX) to greatly increase the energy of the plasma stream produced by the helicon plasma source. ICH was chosen over substrate biasing to produce energetic ions because it can more accurately reproduce plasma-material interactions in a fusion device. For instance, when the target is tilted with respect to the background magnetic field during ICH, a magnetic presheath is created so that redeposition phenomena as in a tokamak divertor can be better approximated. ICH experiments were conducted on the Proto-MPEX device, which was developed to provide a physics basis upon which MPEX is designed. In this paper we describe some of these experiments in which the previous fixed graphite target was replaced by a movable stainless steel target. With the new target, the strong, monotonic decrease in ion temperature observed previously as a function of axial distance between the ion cyclotron resonance region and the target was not observed. Instead, only a small drop was seen within ~1 cm of the target. The ion temperatures were determined spectroscopically, utilizing Doppler broadening measurements of an Ar II line, in a plasma that is 90% deuterium and 10% argon. Measurements were obtained using optical fibers at a fixed location, with the target moving perpendicularly relative to the viewing chords. Comparisons with previous results will be discussed, including observed plasma parameters Ti, Te, and ne, and heat flux at the target.