ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Eleanor G. Forbes, Uri Shumlak, Harry S. McLean, Brian A. Nelson, Elliot L. Claveau, Raymond P. Golingo, Drew P. Higginson, James M. Mitrani, Anton D. Stepanov, Kurt K. Tummel, Tobin R. Weber, Yue Zhang
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 599-607
Technical Paper | doi.org/10.1080/15361055.2019.1622971
Articles are hosted by Taylor and Francis Online.
The sheared-flow-stabilized (SFS) Z-pinch is a promising confinement concept for the development of a compact fusion reactor. The Z-pinch has been theoretically and experimentally shown to be stable to magnetohydrodynamic modes when sufficient radial shear of the axial flow is present. At the University of Washington, the Fusion Z-pinch Experiment (FuZE) research project examines scaling the SFS Z-pinch toward fusion conditions. The FuZE device produces long-duration, 50-cm-long pinches with measured ion and electron temperatures over 1 keV and number densities greater than cm. Plasma properties are measured with a diagnostic suite that includes magnetic field probes, heterodyne quadrature interferometry, digital holographic interferometry, ion-Doppler spectroscopy, and fast framing photography. Neutrons are produced in the FuZE device when deuterium is injected along with the normal hydrogen or helium fueling species. Neutron generation is diagnosed using plastic scintillator detectors. The neutron production is sustained for 5 to 8 μs, thousands of times longer than the static Z-pinch instability growth time. Measured neutron production is consistent with calculated theoretical values for thermonuclear yield at the observed plasma temperatures and scales with the square of the deuterium concentration. A preliminary reactor concept is designed to incorporate flowing liquid metal walls, which would serve as an electrode, a heat transfer fluid, a radiological shield, and a breeding blanket. Using a liquid metal wall could address several unresolved material and technology issues in existing fusion reactor designs.