ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Y. C. Francis Thio, Scott C. Hsu, F. Douglas Witherspoon, Edward Cruz, Andrew Case, Samuel Langendorf, Kevin Yates, John Dunn, Jason Cassibry, Roman Samulyak, Peter Stoltz, Samuel J. Brockington, Ajoke Williams, Marco Luna, Robert Becker, Adam Cook
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 581-598
Technical Paper | doi.org/10.1080/15361055.2019.1598736
Articles are hosted by Taylor and Francis Online.
Plasma-jet-driven magneto-inertial fusion (PJMIF) is the only embodiment of magneto-inertial fusion that has the unique combination of stand-off implosion and high implosion velocity (50 to 150 km/s). It uses inexpensive plasma guns for all plasma formation and implosion and has potential for a relatively high repetition rate from 1 to 2 Hz. Its configuration is compatible with the use of a thick liquid wall that doubles as a tritium breeding blanket as well as a coolant for extracting the heat out of the fusion reactor. The PJMIF operational parameter-space allows for the possibility of using a sufficiently dense target plasma for the target plasma to have a high . If such a high- plasma could be realized, it would help to suppress micro and magnetohydrodynamic instabilities, giving its target plasma classical transport and energy confinement characteristics. Its open geometry and moderate time and spatial scales provide convenient diagnostics access. Diagnostics accessibility, high shot rate, and low cost per shot should enable quick resolution of technical issues during development, thus the potential for enabling rapid research and development of PJMIF. There are a number of challenges for PJMIF, however, including being at a very early stage of development, developing the required plasma guns, dealing with potential liner nonuniformities, clearing the chamber of residual high-Z gas between shots, and developing the repetitive pulsed-power component technologies. Over the last 3 years, the development of the Plasma Liner Formation Experiment (PLX-) has been undertaken to explore the physics and demonstrate the formation of a spherical liner by the merging of a spherical array of plasma jets. Two- and three-jet merging experiments have been conducted to study the interactions of the jets. Six- and seven-jet experiments have been performed to form a piece of the plasma liner. A brief status report on this development is provided in this paper.