ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Eric Lang, Nathan Reid, Lauren Garrison, Chad Parish, J. P. Allain
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 533-541
Technical Paper | doi.org/10.1080/15361055.2019.1602400
Articles are hosted by Taylor and Francis Online.
Tungsten is the material of choice as the plasma-facing material in future plasma-burning fusion reactors. During operation, plasma-facing materials will be simultaneously exposed to 14-MeV neutrons, low-energy D/He particles, and high heat loads. Neutron irradiation of tungsten results in bulk material damage, including knock-on damage causing loops and voids, and transmutation reactions leading to the transmutation of tungsten to rhenium and osmium. Under irradiation to high dose, Re and Os atoms can amalgamate into precipitates that drastically alter the material properties, noticeably increasing the hardness. However, the early-stage development of Re and Os precipitates under a fast neutron spectrum has not been investigated.
In this work, the microstructure and hardening behavior of W-Re alloys containing 0 to 2.2 wt% Re, TiC-doped W, and powder-injection-molded W are investigated prior to neutron irradiation at 500ºC and 800ºC to ~0.1 displacement per atom in the High Flux Isotope Reactor (HFIR) to establish a baseline understanding of the starting microstructures.
Transmission electron microscopy analysis indicates a dislocation-heavy microstructure, and scanning transmission electron microscopy–energy dispersive spectroscopy shows no spatial segregation of Re and W. Similarly, surface compositional studies performed with electron backscatter diffraction and X-ray photoelectron spectroscopy showed no presence of Re, indicating the Re did not segregate or form new phases during fabrication. The alloys in their as-fabricated state showed no Re segregation or second-phase development, with no significant differences between their microstructures and Vickers hardness values.