ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jonah D. Duran, Ezekial A. Unterberg, Mike P. Zach, William R. Wampler, Dmitry L. Rudakov, David C. Donovan
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 493-498
Technical Paper | doi.org/10.1080/15361055.2019.1610316
Articles are hosted by Taylor and Francis Online.
High-Z impurities released from plasma-material interactions have been shown to limit the performance of fusion plasmas, and understanding these impurity transport mechanisms throughout the plasma scrape-off layer is a major challenge. Presented herein is a study of tungsten (W) erosion and transport by uniquely measuring absolute quantities of isotopic W in order to determine the source of natural and enriched 182W isotopes that have traveled throughout the tokamak discharges on the DIII-D National Fusion Facility at General Atomics. Two primary analysis methods have been implemented to characterize this W on graphite collector probes that were inserted into DIII-D’s outboard midplane. Results from experiments using Rutherford backscattering spectrometry (RBS) have measured W particle areal densities down the centerline of the probes as high as 6E14 atoms/cm2 with a detection limit of 1E12 atoms/cm2. Laser ablation inductively coupled plasma mass spectrometry (LAMS) has confirmed the elemental trends found with RBS and has provided additional insight into collector probe surface profiles. Two-dimensional elemental and isotopic maps from LAMS are used to reveal new collector probe features and further refine the source of collected W. Variations in isotopic profiles and total W content are coupled to (a) the face of the probe being analyzed, (b) the dimensions of the probe, and (c) the plasma pulse parameters that were used during probe exposure. These results provide one-of-a-kind empirical evidence that is now being utilized for validation of tokamak impurity transport through theoretical models and in codes such as 3D-LIM and OEDGE.