ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Jonah D. Duran, Ezekial A. Unterberg, Mike P. Zach, William R. Wampler, Dmitry L. Rudakov, David C. Donovan
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 493-498
Technical Paper | doi.org/10.1080/15361055.2019.1610316
Articles are hosted by Taylor and Francis Online.
High-Z impurities released from plasma-material interactions have been shown to limit the performance of fusion plasmas, and understanding these impurity transport mechanisms throughout the plasma scrape-off layer is a major challenge. Presented herein is a study of tungsten (W) erosion and transport by uniquely measuring absolute quantities of isotopic W in order to determine the source of natural and enriched 182W isotopes that have traveled throughout the tokamak discharges on the DIII-D National Fusion Facility at General Atomics. Two primary analysis methods have been implemented to characterize this W on graphite collector probes that were inserted into DIII-D’s outboard midplane. Results from experiments using Rutherford backscattering spectrometry (RBS) have measured W particle areal densities down the centerline of the probes as high as 6E14 atoms/cm2 with a detection limit of 1E12 atoms/cm2. Laser ablation inductively coupled plasma mass spectrometry (LAMS) has confirmed the elemental trends found with RBS and has provided additional insight into collector probe surface profiles. Two-dimensional elemental and isotopic maps from LAMS are used to reveal new collector probe features and further refine the source of collected W. Variations in isotopic profiles and total W content are coupled to (a) the face of the probe being analyzed, (b) the dimensions of the probe, and (c) the plasma pulse parameters that were used during probe exposure. These results provide one-of-a-kind empirical evidence that is now being utilized for validation of tokamak impurity transport through theoretical models and in codes such as 3D-LIM and OEDGE.