ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mahmoud Bakr, Kai Masuda, Masaya Yoshida
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 479-486
Technical Paper | doi.org/10.1080/15361055.2019.1609821
Articles are hosted by Taylor and Francis Online.
Neutrons are generated in the inertial electrostatic confinement (IEC) device through different types of fusion reactions of the fuel gas such as deuterium (D) and tritium (T). Fusion in the IEC device takes place via various kinds of collisions like beam-beam collision, beam–background gas collision, and beam-target collision on the electrode surfaces. Two identical anodes for the IEC chamber made from titanium (Ti) and SUS-316L stainless steel (SS) are used to study the effect of the anode material on the neutron production rate (NPR). The NPRs from the chambers are measured at different applied powers. The achieved NPRs, so far, for Ti and SS are 8.9 × 107 n/s at 5.25 kW (75 kV, 70 mA) and 2.8 × 107 n/s at 10.5 kW (70 kV, 150 mA), respectively. The normalized NPR (NPR rated to the cathode current) from the Ti chamber is three to four times higher than that from the SS chamber. We observed a better NPR for the Ti chamber compared with the SS chamber. This is explained by the fusion reaction occurring between the neutrals and D atoms adsorbed/embedded on the inner surface of the anode. Moreover, the Ti chamber shows an improvement of the NPR as a function of the operating time ranging from 1.5 to 1.75 after 25 h from the first discharge.