ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Mahmoud Bakr, Kai Masuda, Masaya Yoshida
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 479-486
Technical Paper | doi.org/10.1080/15361055.2019.1609821
Articles are hosted by Taylor and Francis Online.
Neutrons are generated in the inertial electrostatic confinement (IEC) device through different types of fusion reactions of the fuel gas such as deuterium (D) and tritium (T). Fusion in the IEC device takes place via various kinds of collisions like beam-beam collision, beam–background gas collision, and beam-target collision on the electrode surfaces. Two identical anodes for the IEC chamber made from titanium (Ti) and SUS-316L stainless steel (SS) are used to study the effect of the anode material on the neutron production rate (NPR). The NPRs from the chambers are measured at different applied powers. The achieved NPRs, so far, for Ti and SS are 8.9 × 107 n/s at 5.25 kW (75 kV, 70 mA) and 2.8 × 107 n/s at 10.5 kW (70 kV, 150 mA), respectively. The normalized NPR (NPR rated to the cathode current) from the Ti chamber is three to four times higher than that from the SS chamber. We observed a better NPR for the Ti chamber compared with the SS chamber. This is explained by the fusion reaction occurring between the neutrals and D atoms adsorbed/embedded on the inner surface of the anode. Moreover, the Ti chamber shows an improvement of the NPR as a function of the operating time ranging from 1.5 to 1.75 after 25 h from the first discharge.