ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Seonghee Hong, Myunghyun Kim
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 466-478
Technical Paper | doi.org/10.1080/15361055.2019.1609820
Articles are hosted by Taylor and Francis Online.
To enhance the practical application of a fusion-driven subcritical reactor, a system with constant fusion power by online feeding of molten salt fuel was designed. The system satisfies multiple purposes including waste transmutation, tritium breeding (TB), and energy multiplication (EM) through constant fusion power. All neutronic calculations were performed by SERPENT2.1.29 with the ENDF/B-VII.0 neutron cross-section library in order to simulate the online-feeding process.
A constant k-eff is maintained by the amount of the feeding being larger than the amount of the removed fission products. However, system performance is significantly improved by just reducting the reactivity swing with the feeding. Compared to a once-through cycle (OTC), the performance of TB and EM is significantly improved as the feeding rate increases. However, there is no deep burning effect like the OTC for waste transmutation.
The performance of waste transmutation is changed in the feeding scenarios. For the scenario with a high plutonium ratio, transmutation with plutonium is increased. On the other hand, for the feeding scenario with a high minor actinide ratio, transuranic waste is burned. However, the transmutation performance is degraded due to a low fission-to-capture ratio.