ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Katherine Royston, Georgeta Radulescu, Walter Van Hove, Stephen Wilson, Seokho Kim
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 458-465
Technical Paper | doi.org/10.1080/15361055.2019.1606519
Articles are hosted by Taylor and Francis Online.
The ITER fusion reactor is being built to demonstrate the feasibility of fusion power and will be the largest tokamak in the world. The tokamak cooling water system (TCWS) will extract the heat generated during operations and includes large amounts of piping and equipment such as pumps and heat exchangers (HXs) that are located in a large shielded region on level L3 of the tokamak building. During operation, water in the TCWS will be activated by plasma neutrons and then flow into this shielded region. The activated coolant will in turn activate the steel in the TCWS during operation and result in an activation gamma source and radiation responses that must be assessed to inform equipment selection and maintenance schedules.
The activation of materials in the shielded region of level L3 was assessed at several decay times and for different equipment options using the Oak Ridge National Laboratory (ORNL) shutdown dose rate (SDDR) code suite. The ORNL SDDR code suite implements the rigorous two-step method using the Multi-Step Consistent Adjoint-Driven Importance Sampling (MS-CADIS) method to create effective neutron variance reduction parameters for the photon response of interest. Two different HX designs, shell and tube and shell and plate, were considered, as well as the impact of cobalt impurities in steel equipment.