ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Georgeta Radulescu, Katherine E. Royston, Stephen C. Wilson, Walter Van Hove, David E. Williamson, Seokho H. Kim
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 452-457
Technical Paper | doi.org/10.1080/15361055.2019.1589205
Articles are hosted by Taylor and Francis Online.
Heat generated in the ITER fusion reactor is deposited in the tokamak vacuum vessel, in-vessel components, and in the components of the neutral beam injector during plasma operations and during subsequent decay of activation products. This heat is managed by the tokamak cooling water system (TCWS). The stainless steel material in the integrated loop of blanket edge-localized mode vertical stabilization coils and divertor (IBED) components (e.g., piping, heat exchangers (HXs), and pumps) contains activation sources because of its exposure primarily to neutron radiation from the decay of 17N, which is a short-lived radionuclide produced by neutron capture reactions with oxygen nuclei in the IBED primary heat transfer system (PHTS) cooling water during plasma operations. A detailed geometry model of the IBED stainless steel components and neutron radiation sources is required for an accurate assessment of the gamma activation sources on level 3 of the tokamak building. In the baseline design, each of the eight IBED PHTS cooling trains has two shell-and-tube heat exchangers (HXs) connected in series. Because these HXs are very large and contain a large amount of radioactive water, the possibility of using compact HXs of the welded shell-and-plate type is under investigation. This paper presents two Monte Carlo N-Particle (MCNP) TCWS geometry models, one model for each HX type, along with the associated piping. These models were obtained by automatic geometry conversion from TCWS computer-aided design models. The TCWS geometry models and neutron source definitions were incorporated into a baseline MCNP model of the Tokamak Complex.