ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Lucas M. Rolison, Michael L. Fensin, Y. C. Francis Thio, Scott C. Hsu, Edward J. Cruz
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 438-451
Technical Paper | doi.org/10.1080/15361055.2019.1613140
Articles are hosted by Taylor and Francis Online.
We present neutronics calculations for a hypothetical fusion reactor based on the repetitively pulsed concept of plasma-jet-driven magneto-inertial fusion (PJMIF). A PJMIF reactor is envisioned to have a replaceable, 3-m-radius spherical metal first wall exposed to 14.1-MeV neutrons; a fast-flowing FLiBe liquid blanket (with thickness 0.75 m) behind the first wall serving as the primary coolant and tritium-breeding medium; and finally an outer structural spherical wall shielded by the blanket. Cylindrical penetrations through both walls and the flowing blanket allow for hundreds of plasma gun drivers to inject hypersonic plasma jets that form both the deuterium-tritium plasma target and high-Z spherically imploding plasma liner to compress the target. This research is the first to conduct Monte Carlo N-Particle (MCNP6.2) and CINDER2008 neutronics calculations relevant to the PJMIF reactor configuration, with the primary objectives of determining (1) the neutron flux as a function of blanket thickness in the blanket and key reactor components and (2) the tritium production rate in the liquid blanket. These results will be used to estimate other quantities of interest, such as first-wall and gun-electrode lifetimes based on displacements per atom (dpa) accumulation, optimum blanket thickness, activation level of the outer wall and xenon liner, and achievable tritium-breeding ratios. Energy-dependent flux tallies were used to calculate neutron flux inside the FLiBe blanket and outer wall, as well as the cylindrical ports where plasma guns are located. Tally multipliers of the flux in MCNP6.2 estimated tritium breeding ratio, dpa, and nuclear heating, while the depletion code CINDER2008 was used to compare tritium breeding ratios with MCNP6.2 and calculate activation of the outer wall and xenon liner. These calculations provide a baseline for blanket requirements necessary for power production in a PJMIF reactor.