ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Lucas M. Rolison, Michael L. Fensin, Y. C. Francis Thio, Scott C. Hsu, Edward J. Cruz
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 438-451
Technical Paper | doi.org/10.1080/15361055.2019.1613140
Articles are hosted by Taylor and Francis Online.
We present neutronics calculations for a hypothetical fusion reactor based on the repetitively pulsed concept of plasma-jet-driven magneto-inertial fusion (PJMIF). A PJMIF reactor is envisioned to have a replaceable, 3-m-radius spherical metal first wall exposed to 14.1-MeV neutrons; a fast-flowing FLiBe liquid blanket (with thickness 0.75 m) behind the first wall serving as the primary coolant and tritium-breeding medium; and finally an outer structural spherical wall shielded by the blanket. Cylindrical penetrations through both walls and the flowing blanket allow for hundreds of plasma gun drivers to inject hypersonic plasma jets that form both the deuterium-tritium plasma target and high-Z spherically imploding plasma liner to compress the target. This research is the first to conduct Monte Carlo N-Particle (MCNP6.2) and CINDER2008 neutronics calculations relevant to the PJMIF reactor configuration, with the primary objectives of determining (1) the neutron flux as a function of blanket thickness in the blanket and key reactor components and (2) the tritium production rate in the liquid blanket. These results will be used to estimate other quantities of interest, such as first-wall and gun-electrode lifetimes based on displacements per atom (dpa) accumulation, optimum blanket thickness, activation level of the outer wall and xenon liner, and achievable tritium-breeding ratios. Energy-dependent flux tallies were used to calculate neutron flux inside the FLiBe blanket and outer wall, as well as the cylindrical ports where plasma guns are located. Tally multipliers of the flux in MCNP6.2 estimated tritium breeding ratio, dpa, and nuclear heating, while the depletion code CINDER2008 was used to compare tritium breeding ratios with MCNP6.2 and calculate activation of the outer wall and xenon liner. These calculations provide a baseline for blanket requirements necessary for power production in a PJMIF reactor.