ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tim D. Bohm, Andrew Davis, Moataz S. Harb, Edward P. Marriott, Paul P. H. Wilson
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 429-437
Technical Paper | doi.org/10.1080/15361055.2019.1600930
Articles are hosted by Taylor and Francis Online.
The use of a liquid-metal (LM) plasma-facing component (LM-PFC) in fusion reactor designs has some advantages as well as some disadvantages as compared to traditional designs that use a solid plasma-facing wall. Neutronics analysis of these potential LM-PFC concepts is important in order to ensure that radiation limits are met and that system performance meets expectations.
A three-dimensional (3-D) neutronics analysis parametric study considering four LM first-wall (FW) candidates, (PbLi, Li, Sn, and SnLi) was performed with a thin (2.51-cm) LM-PFC design. The 3-D neutronics study used a fusion reactor based on the Fusion Energy Systems Study (FESS) Fusion Nuclear Science Facility (FNSF) (FESS-FNSF) that served as the baseline for comparison. FESS-FNSF is a deuterium-tritium–fueled tokamak with 518 MW of fusion power. A partially homogenized 3-D computer-aided-design model of the LM-PFC FNSF design was analyzed using the DAG-MCNP5 transport code.
The results show that all candidate LM designs are acceptable with 4% to 13% increases in the tritium breeding ratio compared to the baseline case. The peak displacements per atom at the FW decrease 2% to 15%. For all four LM designs examined, the magnet heating and fast neutron fluence are well below acceptable limits. Overall, the Li LM design is the best candidate from a neutronics perspective.