ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
R. Bonifetto, N. Pedroni, L. Savoldi, R. Zanino
Fusion Science and Technology | Volume 75 | Number 5 | July 2019 | Pages 412-421
Technical Paper | doi.org/10.1080/15361055.2019.1602398
Articles are hosted by Taylor and Francis Online.
The design of the European Union (EU) DEMO reactor magnet system, currently ongoing within the EUROfusion consortium, will take advantage of the know-how developed during the design and manufacturing of ITER magnets; however, DEMO will suffer some new, more severe challenges, e.g., larger tritium inventory and higher neutron fluence, both having an impact on safety functions accomplished, among the other systems, also by the magnets. For these reasons, and in view of the need to demonstrate a high availability of the reactor (aimed at electricity production), a new, more systematic assessment of the system safety is required. As a contribution in this direction, the initiating events (IEs) of the most critical accident sequences in the EU DEMO magnet system (with special reference to the toroidal field magnets) are identified here, adopting first a functional analysis and then a failure mode, effects, and criticality analysis. In particular, the following are provided: (1) the EU DEMO magnet system is subdivided into functionally independent subsystems and components (e.g., the magnets, their cooling circuits, and their power supply system); (2) the relevant failure modes of each subsystem are systematically identified, together with the corresponding causes and consequences; (3) a list of IEs is compiled, leading to scenarios that may compromise the magnet safety and availability. Finally, the so-called postulated IEs are selected as the most challenging IEs for the safety of the magnet system. This analysis initializes a path leading to a risk-informed design, i.e., the identification of safety issues that could be addressed at the design level instead of introducing expensive mitigation measures after the design completion.