ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
D. Elbèze, D. van Houtte, E. Delchambre
Fusion Science and Technology | Volume 75 | Number 5 | July 2019 | Pages 405-411
Technical Paper | doi.org/10.1080/15361055.2019.1603534
Articles are hosted by Taylor and Francis Online.
In the Reliability, Availability, Maintainability, and Inspectability (RAMI) engineering approach used in nuclear fusion research, criticality identifies the failure modes that have the greatest impact on the availability of the studied system. Criticality is expressed as the product of the occurrence level with the severity level of failure modes. The analytical calculation shows that this formulation is equivalent to their availability provided that the duty cycle of basic functions is introduced to adjust the occurrence and the scales of occurrence and severity are homogeneous.
To consolidate the results obtained with a Reliability Block Diagram analysis, we performed a probabilistic study using an advanced Monte Carlo simulation code: the Primavera® Quantitative Schedule Risk Analysis. This method associates failure modes with conditional activities in a schedule and provides the density distribution of failures and tornado graphs to identify the highest criticality failures.
Statistical tests were performed for two operational systems, and we showed that the criticality evaluated with the RAMI approach was in good agreement with the results of the other methods. Thus, in many cases, the analytical formulas can be used during the Failure Mode, Effects, and Criticality Analysis to quickly assess availability by using a spreadsheet.