ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. A. London, R. L. McEachern, B. J. Kozioziemski, D. N. Bittner
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 245-252
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A457
Articles are hosted by Taylor and Francis Online.
A computational model is presented for infrared heating of frozen hydrogen layers in cryogenic ICF capsules. The model contains linked ray trace and heat conduction programs. The conduction part of the model has been validated with a cryogenic hohlraum experiment without infrared irradiation. The complete model has been used to design and analyze experiments on infrared layering of D2 in a hohlraum. The modeling provides an understanding of how to control the long scale length ice thickness perturbations by varying the infrared power balance and beam pointing. Based on the confidence developed in the model by comparison to experiment, design calculations are presented for IR layering systems for ICF ignition targets.