ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E. L. Alfonso, R. Q. Gram, D. R. Harding
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 218-228
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A454
Articles are hosted by Taylor and Francis Online.
Cooling thin-walled capsules with a high-pressure deuterium fill is a critical phase of operation for providing cryogenic direct-drive targets. During cooling to 20 K, buckling and burst forces develop due to transient thermal gradients, thermal expansion differences in the materials of the capsule and the permeation cell, and changing permeability of the plastic. This article presents the results of both a steady-state and a transient analysis of the pressure differences across the thin-walled capsule during the cooling process. The steady-state contribution to the pressure difference arises from two sources: (1) the different thermal contractions of the materials that comprise the permeation cell and capsule and (2) the room-temperature volume of gas in the line connecting the permeation cell to the isolation valve. The transient analysis considers the pressure differences across the capsule wall that arise from the changing temperature gradients within the gas during the cooling cycle. Both effects have been taken into account to determine an approach that produces fuel-filled, thin-walled cryogenic targets more rapidly. Currently, capsules are slowly cooled at a rate of 0.1 K/min to prevent their destruction. This process requires over 45 h to complete. The results of the present model suggest a faster cooling program that takes into consideration the induced pressure differences, the permeation occurring at higher temperatures, and the strength of the capsule. The time to cool a filled target can be reduced by 25% while maintaining capsule survival.