ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
H. Huang, R. B. Stephens, D. W. Hill, C. Lyon, A. Nikroo, D. A. Steinman
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 214-217
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A453
Articles are hosted by Taylor and Francis Online.
Inertial Confinement Fusion (ICF) shells are mesoscale objects with nano-scale dimensional and nanosurface finish requirements. Currently, the shell dimensions are measured by white-light interferometry and an image analysis method. These two methods complement each other and give a rather complete data set on a single shell. The process is, however, labor intensive. We have developed an automation routine to fully characterize a shell in one shot and perform unattended batch measurement. The method is useful to the ICF program both for production screening and for full characterization. It also has potential for Inertial Fusion Energy (IFE) power plant where half a million shells need to be processed daily.